Problem: 1

Show that C, the set of all non-zero complex numbers is a multiplicative group.

Solution: Let C={z:z=x+iy, x, y $\in R$ }. Here *R* is the set of all real numbers and $i = \sqrt{-1}$.

(1) **Closure Axiom:** If $a+ib \in C$ and $c+id \in C$, then by the definition of

multiplication of complex numbers

 $(a+ib)(c+id)=(ac-bd)+i(ad+bc) \in C$

Since ac-bd, $ad+bc \in R$ for $a,b,c,d \in R$. Therefore, C is closed under multiplication.

(2) Associative Axiom:

 $(a+ib){(c+id)(e+if)}=(ace-adf-bcf-bde)+i(acf+ade+bce-bdf)$

={(a+ib)(c+id)}(e+if) for a,b,c,d \in R.

(3) Identity Axiom: e=1(=1+i0) is the identity in C.

(4) Inverse Axiom: Let $(a+ib)(\neq 0) \in C$, then

$$(a+ib)^{-1}=1/(a+ib)$$

=a-ib/(a²+b²)(a+ib)-¹
=a/(a²+b²)+i(b/(a²+b²))
=m+in $\in \mathbb{C}$

where $m = a/(a^2+b^2)$ and $n = b/(a^2+b^2)$. Hence C is a multiplicative group.

Problem: 2

Prove that the set all nth roots of unity with usual multiplication is a group.

Proof:

Let $\omega = cos\left(\frac{2\pi}{n}\right) + isin(\frac{2\pi}{n})$

Then the $\mbox{ nth roots of unity are given by }1,\!\omega,\!\omega^2,\!...,\!\omega^{n\!-\!1}$

Let $G = \{1, \omega, \omega^2, ..., \omega^{n-1}\}$ be the group with respect to multiplication.

We know that $\omega^n = 1$, $\omega^{n+1} = \omega$ etc.

Let $\omega^r, \omega^s \in G$. Let r+s=qn+t where $0 \le t < n$. $\omega^r, \omega^s = \omega^{r+s} = \omega^{qn+t} = (\omega^n)^q \omega^t = \omega^t \in G$

We know that usual multiplication of complex number is associative.

 $1 \in G$ is the identity element.

Inverse of $\omega^r is \ \omega^{n-r}$.

Hence G is agroup.

Hence the set all nth roots of unity with usual multiplication is a group.

Problem: 3

Let G denote the set of all matrices of the form $\begin{pmatrix} x & x \\ x & x \end{pmatrix}$ where $x \in R^*$. Then prove that G is a group under multiplication.

Proof:

Let
$$A, B \in G$$
. Let $A = \begin{pmatrix} x & x \\ x & x \end{pmatrix}$ and $B = \begin{pmatrix} y & y \\ y & y \end{pmatrix}$.

Closure Axiom:

$$AB = \begin{pmatrix} 2xy & 2xy \\ 2xy & 2xy \end{pmatrix} \in G.$$

Associative Axiom:

We know that matrix multiplication is associative.

Identity Axiom:

Let
$$E = \begin{pmatrix} e & e \\ e & e \end{pmatrix}$$
 be such that AE=A.

$$\therefore \begin{pmatrix} x & x \\ x & x \end{pmatrix} \begin{pmatrix} e & e \\ e & e \end{pmatrix} = \begin{pmatrix} x & x \\ x & x \end{pmatrix}$$

$$\therefore \begin{pmatrix} 2xe & 2xe \\ 2xe & 2xe \end{pmatrix} = \begin{pmatrix} x & x \\ x & x \end{pmatrix}$$

$$\therefore 2xe = x. Hence \ e = 1/2.$$

Hence $E = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$ is the identity element of G.

Inverse Axiom:

Let
$$\begin{pmatrix} y & y \\ y & y \end{pmatrix}$$
 be the inverse of $\begin{pmatrix} x & x \\ x & x \end{pmatrix}$.
Then $\begin{pmatrix} x & x \\ x & x \end{pmatrix} \begin{pmatrix} y & y \\ y & y \end{pmatrix} = \begin{pmatrix} x & x \\ x & x \end{pmatrix}$
 $\therefore \begin{pmatrix} 2xy & 2xy \\ 2xy & 2xy \end{pmatrix} = \begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$
 $\therefore 2xy = \frac{1}{2}$
Hence $y = \frac{x}{4}$
 \therefore Inverse of $\begin{pmatrix} x & x \\ x & x \end{pmatrix}$ is $\begin{pmatrix} x/4 & x/4 \\ x/4 & x/4 \end{pmatrix}$
Hence G is a group.

Problem 6: Let $G=\{0,1,2,3,4,5\}$ be a set. Show that under addition modulo 6 G form a group.

Proof:

+6	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

1. From table it is clear that G is closed under closure property as resulting element again element of set G.

2. Clearly associative law hold in G

3. From second row and second column it is clear that 0 is the identity element of the group.

4. From table it is clear that inverse of every element of G exist in G.

That is 1⁻¹=5, 2⁻¹=4, i 3 ⁻¹=3,4⁻¹=2, 5⁻¹=1.

5. Since all the elements are symmetrical about principle diagonal, G is abelian.

Hence G is abelian group.

Problem 5:

Let $G=\{1,2,3,4,5,6\}$ be a set. Show that under multiplication modulo 7 G form a group. **Proof:**

×7	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

1. From table it is clear that G is closed under closure property as resulting element again element of set G.

2. Clearly associative law holds in G

3. From second row and second column it is clear that 1 is the identity element of the group.

4. From table it is clear that inverse of every element of G exist in G. Since all the elements are symmetrical about principle diagonal, G is abelian.

Hence G is abelian group.

Exercises.

- 1. Prove that C^* is a group under usual multiplication given by (a + ib)(c + id) = (ac bd) + i(ad + bc).
- 2. Let $G = \{a + b\sqrt{2} : a, b \in Z\}$. Then prove that G is a group under usual addition.
- 3. Let $G = \{1, I, -1, -i\}$. Prove that G is a group under usual multiplication.
- 4. Let G be the set of all real numbers except -1. Define * on G by a*b=a+b+ab. Prove that (G,*) is agroup.
- 5. In \mathbf{R} -{1} we define a*b=a+b-ab. Show that (\mathbf{R} -{1},*) is a group. Is this group abelian?.