Problem: 1

Show that C , the set of all non-zero complex numbers is a multiplicative group.
Solution: Let $\mathrm{C}=\{\mathrm{z}: \mathrm{z}=\mathrm{x}+\mathrm{iy}, \mathrm{x}, \mathrm{y} \in R\}$. Here R is the set of all real numbers and $i=\sqrt{ }-1$.
(1) Closure Axiom: If $a+i b \in C$ and $c+i d \in C$, then by the definition of multiplication ofcomplex numbers
$(a+i b)(c+i d)=(a c-b d)+i(a d+b c) \in C$
Since $a c-b d, a d+b c \in R$ for $a, b, c, d \in R$. Therefore, C is closed under multiplication.

(2) Associative Axiom:

$$
\begin{aligned}
&(\mathrm{a}+\mathrm{ib})\{(\mathrm{c}+\mathrm{id})(\mathrm{e}+\mathrm{if})\}=(\text { ace }-\mathrm{adf}-\mathrm{bcf}-\mathrm{bde})+\mathrm{i}(\mathrm{acf}+\mathrm{ade}+\mathrm{bce}-\mathrm{bdf}) \\
&=\{(\mathrm{a}+\mathrm{ib})(\mathrm{c}+\mathrm{id})\}(\mathrm{e}+\mathrm{if}) \text { for } \mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}
\end{aligned} \in \mathrm{R} .
$$

(3) Identity Axiom: $\mathrm{e}=1(=1+\mathrm{i} 0)$ is the identity in C .
(4) Inverse Axiom: Let $(a+i b)(\neq 0) \in C$, then

$$
\begin{aligned}
(a+i b)^{-1} & =1 /(a+i b) \\
& =a-i b /\left(a^{2}+b^{2}\right)(a+i b)-{ }^{1} \\
& =a /\left(a^{2}+b^{2}\right)+i\left(b /\left(a^{2}+b^{2}\right)\right. \\
& =m+i n \in C
\end{aligned}
$$

where $m=a /\left(a^{2}+b^{2}\right)$ and $n=b /\left(a^{2}+b^{2}\right)$. Hence C is a multiplicative group.
Problem: 2
Prove that the set all nth roots of unity with usual multiplication is a group.

Proof:

Let $\omega=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$
Then the nth roots of unity are given by $1, \omega, \omega^{2}, \ldots, \omega^{\mathrm{n}-1}$
Let $\mathrm{G}=\left\{1, \omega, \omega^{2}, \ldots \omega^{\mathrm{n}-1}\right\}$ be the group with respect to multiplication.
We know that $\omega^{n}=1, \omega^{n+1}=\omega$ etc.
Let $\omega^{r}, \omega^{s} \in G$. Let $\mathrm{r}+\mathrm{s}=\mathrm{qn+t}$ where $0 \leq t<n . \omega^{r}, \omega^{s}=\omega^{r+s}=\omega^{q n+t}=\left(\omega^{n}\right)^{q} \omega^{t}=$ $\omega^{t} \in G$

We know that usual multiplication of complex number is associative.
$1 \in G$ is the identity element.
Inverse of ω^{r} is ω^{n-r}.
Hence G is agroup.
Hence the set all nth roots of unity with usual multiplication is a group.

Problem: 3

Let G denote the set of all matrices of the form $\left(\begin{array}{ll}x & x \\ x & x\end{array}\right)$ where $x \in R^{*}$. Then prove that G is a group under multiplication.

Proof:
Let $A, B \in G$. Let $A=\left(\begin{array}{ll}x & x \\ x & x\end{array}\right)$ and $B=\left(\begin{array}{ll}y & y \\ y & y\end{array}\right)$.

Closure Axiom:

$$
A B=\left(\begin{array}{ll}
2 x y & 2 x y \\
2 x y & 2 x y
\end{array}\right) \in G .
$$

Associative Axiom:

We know that matrix multiplication is associative.

Identity Axiom:

Let $E=\left(\begin{array}{ll}e & e \\ e & e\end{array}\right)$ be such that $\mathrm{AE}=\mathrm{A}$.

$$
\begin{aligned}
& \therefore\left(\begin{array}{ll}
x & x \\
x & x
\end{array}\right)\left(\begin{array}{ll}
e & e \\
e & e
\end{array}\right)=\left(\begin{array}{ll}
x & x \\
x & x
\end{array}\right) \\
& \therefore\left(\begin{array}{ll}
2 x e & 2 x e \\
2 x e & 2 x e
\end{array}\right)=\left(\begin{array}{ll}
x & x \\
x & x
\end{array}\right) \\
& \therefore 2 x e=\text { x. Hence } e=1 / 2 .
\end{aligned}
$$

Hence $E=\left(\begin{array}{ll}1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right)$ is the identity element of G .

Inverse Axiom:

Let $\left(\begin{array}{ll}y & y \\ y & y\end{array}\right)$ be the inverse of $\left(\begin{array}{ll}x & x \\ x & x\end{array}\right)$.
Then $\left(\begin{array}{ll}x & x \\ x & x\end{array}\right)\left(\begin{array}{ll}y & y \\ y & y\end{array}\right)=\left(\begin{array}{ll}x & x \\ x & x\end{array}\right)$

$$
\begin{gathered}
\therefore\left(\begin{array}{ll}
2 x y & 2 x y \\
2 x y & 2 x y
\end{array}\right)=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right) \\
\therefore 2 x y=\frac{1}{2} \\
\text { Hence } y=\frac{x}{4} \\
\therefore \text { Inverse of }\left(\begin{array}{ll}
x & x \\
x & x
\end{array}\right) \text { is }\left(\begin{array}{ll}
x / 4 & x / 4 \\
x / 4 & x / 4
\end{array}\right)
\end{gathered}
$$

Hence G is a group.

Problem 6: Let $G=\{0,1,2,3,4,5$) be a set. Show that under addition modulo 6 G form a group.

Proof:

$\mathbf{+}_{6}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{0}$	0	1	2	3	4	5
$\mathbf{1}$	1	2	3	4	5	0
$\mathbf{2}$	2	3	4	5	0	1
$\mathbf{3}$	3	4	5	0	1	2
$\mathbf{4}$	4	5	0	1	2	3
$\mathbf{5}$	$\mathbf{5}$	0	1	2	3	4

1. From table it is clear that G is closed under closure property as resulting element again element of set G.
2. Clearly associative law hold in G
3. From second row and second column it is clear that 0 is the identity element of the group.
4. From table it is clear that inverse of every element of G exist in G.

That is $1^{-1}=5,2^{-1}=4$, i $3^{-1}=3,4^{-1}=2,5^{-1}=1$.
5. Since all the elements are symmetrical about principle diagonal, G is abelian.

Hence G is abelian group.

Problem 5:

Let $\mathrm{G}=\{1,2,3,4,5,6\}$ be a set. Show that under multiplication modulo 7 G form a group.

Proof:

x_{7}	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
$\mathbf{1}$	1	2	3	4	5	6
$\mathbf{2}$	2	4	6	1	3	5
$\mathbf{3}$	3	6	2	5	1	4
$\mathbf{4}$	4	1	5	2	6	3
$\mathbf{5}$	5	3	1	6	4	2
$\mathbf{6}$	6	5	4	3	2	1

1. From table it is clear that G is closed under closure property as resulting element again element of set G.
2. Clearly associative law holds in G
3. From second row and second column it is clear that 1 is the identity element of the group.
4. From table it is clear that inverse of every element of G exist in G. Since all the elements are symmetrical about principle diagonal, G is abelian.
Hence G is abelian group.

Exercises.

1. Prove that C^{*} is a group under usual multiplication given by $(a+i b)(c+i d)=$ $(a c-b d)+i(a d+b c)$.
2. Let $G=\{a+b \sqrt{2}: a, b \in \boldsymbol{Z}\}$. Then prove that G is a group under usual addition.
3. Let $\mathrm{G}=\{1, \mathrm{I},-1,-\mathrm{i}\}$. Prove that G is a group under usual multiplication.
4. Let G be the set of all real numbers except -1 . Define * on G by $a * b=a+b+a b$. Prove that ($\mathrm{G},{ }^{*}$) is agroup.
5. In $\mathbf{R}-\{1\}$ we define $\mathrm{a}^{*} \mathrm{~b}=\mathrm{a}+\mathrm{b}-\mathrm{ab}$. Show that $\left(\mathbf{R}-\{1\},{ }^{*}\right)$ is a group. Is this group abelian?.
